Appendix A
Some Historical Notes

In this Appendix We Introduce Some of the Historical Figures of Hypertext

Bill Atkinson
Developer of First Commercial Hypertext "HtI"

Doug Engelbart
First Implementer of Hypertext

Ted Nelson
Coiner of the Terms "Hypertext" and "Hypermedia"

John Sculley
Corporate Visionary of the Information Navigator

Nicholas Negroponte and Richard Bolt
Developers of Dataland Spatlan Data Management

The Zog Group at Carnegie-Mellon
and Menu-Driven Hypertext Interfaces

Andries van Dam
and the Brown Univ.
Developers of Instructional Uses of Hypertext

Bush: Inventor of the Concept of Hypertext

Introduction

World War II is over. The Director of the U.S. Government's Office of Scientific Research and Development, science advisor to the President, writes an article in the Atlantic Monthly in which he sketches his vision of a tool that will aid individual knowledge workers. "Consider a future device for individual use, which is a sort of mechanized private file and library. It needs a name, and, to coin one at random, memex will do. A memex is a device in which an individual stores all his books, records, and communications, and which is mechanized so that it may be consulted with exceeding speed and flexibility. It is an enlarged intimate supplement to his memory." With these words, Dr. Vannevar Bush describes what is to become the personal computer and hypertext systems of today and tomorrow. All quotes are from Bush's 1945 article "As We May Think."

Scanning as Input:
In the Bush machine, input was done by photography. The user would place books, photos, handwritten notes, etc., face down on a transparent glass plate, then "the depression of a lever causes it to be photographed onto the next blank space in a section of the memex film..."

Display Screens
Bush visualized having two display screens so that you could compare data from two documents.

Mass Storage
Bush was writing before the digital computer was fully invented and produced, so he conceived of microfilm as the mass storage medium. Inside the memex is the microphotographic storage device. Bush speculated, "...if the user inserted 5000 pages of material a day, it would take him hundreds of years to fill the repository, so he can be prolific and enter material freely.

Purchase Published Documents
Bush thought there would be a market for books and articles published on microfilm that could be simply dropped into the memory. "Business correspondence takes the same path," he suggests.
Rapid Browsing

Part of the attractiveness of the idea of the memex for Bush was rapid access to the scientific and technical literature. "There is, of course, provision for consultation of the record by the usual scheme of indexing. If the user wishes to consult a certain book, he taps its code on the keyboard, and the title page of the book promptly appears before him... On deflecting one...lever...to the right he runs through the book before him, each paper in turn being projected at a speed which just allows a recognizing glance at each."

Adding Personal Links

Bush also foresaw the idea of user-created links. "A special button transfers him immediately to the first page of the index. Any given book of his library can thus be called up and consulted with far greater facility than if it were taken from a shelf. As he has several projection positions, he can leave one item in position while he calls up another. He can add marginal notes and comments, taking advantage of one possible type of dry photography..."

Retrieving Trails of Links

Bush had a vivid idea of how the retrieval of links would take place. He wrote, "...associative indexing, the basic idea of which is a provision whereby any item may be caused at will to select immediately and automatically another...When the user is building a trail, he names it, enters the name in his code book, and taps it out on his keyboard. Before him are two items to be joined, projected onto adjacent viewing positions... The user taps a single key, and the two items are permanently joined... Thereafter, at any time, when one of these items is in view, the other can be instantly recalled merely by tapping a button... Moreover, when numerous items have been thus joined together to form a trail, they can be reviewed in turn, rapidly or slowly, by deflecting a lever..."
Engelbart's Augment: First Operational Hypertext

Introduction

Douglas C. Engelbart, then with Stanford Research Institute, built the first working and usable hypertext system. His Augment hypertext system, currently marketed by McDonnell Douglas, has supported a group of a thousand or more knowledge workers over 20 years. It provides the most sophisticated demonstration of the structured hypertext principles as well as the idea of an on-line community of knowledge workers that has been implemented. Here we present a brief overview of the Augment system and salute Engelbart for his accomplishments.
Engelbart: Edison of the Personal Computer

Introduction
Doug Engelbart is the Edison of the personal computer. He not only invented many of the familiar devices we have on our PC's and workstations, but also was the first builder of a working hypertext system. His research program was built on an extraordinarily broad vision of "augmenting human intelligence." Here we record just some of the major accomplishments of Engelbart and his colleagues at Stanford Research Institute. His Augmentation Research Laboratory began in 1962 and had a working personal computer with the hypertext system and on-line group work environments by the mid-sixties. Among the accomplishments of Doug and the Laboratory are the following:

Invention of the Mouse

First Major Implementation of Electronic Mail

Invention of Multiple Window on Computer Screen

First Implementation of Word Processing

Invention of On-Line Integrated Help Systems

Invention of Outlining Software And Idea Processors
Nelson: Name-Giver of the Word "Hypertext"

Introduction

Ted Nelson coined the terms "hypertext" and "hypermedia" in 1965 and has acted as an evangelist for the concepts ever since. His definition of hypertext is "computer-supported non-sequential writing." His visionary idea of a "docuverse" containing all of humankind's documents linked has inspired a generation of researchers and educators.

The Xanadu Vision

Xanadu® is Nelson's plan for a "world-wide network, intended to serve hundreds of millions of users simultaneously from the corpus of the world's stored writings, graphics, and data."

"Xanadu is not a large centralized software system but rather an idea for software for running a decentralized network." As Nelson says, "It is a design for a new literature and a system of order to make such a network understandable, usable, and readily expansible to any degree..."

Storage System

Xanadu is a concept of a storage system that permits documents to be stored only once in a "universal data structure to which all other data may be mapped."

Address and Linking System

The address and linking system permits "any spans of bytes in any document or file, on any server, (to be) linked to any other spans of bytes, in any document or file, on any server, by a link type which is unique or used elsewhere in the system."

Authoring

The system would permit

1. allocation of credit of authorship and publishing
2. allocation of payment of royalties based on the reader's use of documents
3. quotability of any document, yet easy tracing to the source of the quotation via hypertext links.

"Imagine everything available and tied together. Grand visions come to mind of what things will be like when 'it's all there and linked.' The thought of that great body of material calls to us, calls to us like the ocean."

"But the ocean of universal hypertext is not enough: we want free sailing on it.... A world of open hypertext publishing promises extraordinary new freedom for the mind, a new empowerment of humanity."
"Everything is deeply intertwined."

"Imagine making your own notes and connections any way you choose in this great interconnected corpus; so that any time you want to reopen this great hypertext world at any of these private annotations that make it your own, it will be like opening a book to a bookmark."

"Universal or grand hypertext, then, means a new publishing system -- an accessible great universe of linked documents and graphics (and audio recordings and video and movies). This is an idea many people now share -- the idea that we can get to everything, keep track of everything, add to everything, tie everything together, that we can have it all."

"By 'hypertext' I mean non-sequential writing."
Van Dam and Brown: First University Instruction

Introduction

Since the late 1960's, Andries van Dam and a team at Brown University have created several generations of experimental hypertext and hypermedia systems. Their focus has been on the use of these systems in college instruction.

English Poetry

One system was used in the early 1970's to teach an English poetry class. Students worked together on the same hypertext document, reading and writing on computer terminals that displayed the hypertext consisting of poetry and commentary.

Biology and English Literature

Two more classes largely supported in hypertext have been developed. The Brown team has in the last few years built a group of multi-media workstations and taught courses in cell biology and English literature on the system.

Prototype sections of other courses have also been implemented. This work has produced important information on how to integrate hypertext documents into normal teaching-learning environments.
Zog Group at Carnegie-Mellon: Menu Interfaces

Menu-Driven Interfaces for Hypertext

In 1972, a group at Carnegie-Mellon University that has included Allen Newell, Donald L. McCracken, Robert M. Aksay, and George G. Robertson began building a series of experimental hypertext systems that were given the collective name Zog. Their work was focused on making a system that would produce rapid response in large networks through a simple menu selection interface. Zog was designed to serve a large community of users.

Nuclear Aircraft Carrier Application

The group was given the opportunity in 1980 to implement its work on the new U.S. Navy nuclear-powered carrier, USS Carl Vinson. They developed a new version that supported the ship's organization and regulations manual and a planning and evaluation application.

Knowledge Management System

Out of the work on the USS Vinson, a commercial version of the Zog system has been marketed since 1983 under the name Knowledge Management System (KMS). It is implemented on Sun workstations.

Current Version of KMS

The current version of KMS is particularly well suited to the joint creation of documents on different workstations in a network, such as when many engineers have to work on a single proposal.

Screen-Sized Frames

The database in KMS consists of screen-sized frames which may contain "any mixture of text, graphics and image items, each of which may be linked to another frame or used to invoke a program." These frames may be stored in the memories of different workstations on the network. Here we show displays of different frames on the screens of several workstations.
Hierarchical Structure Emphasized

KMS emphasizes hierarchical structures and retains fairly conventional implementations of tables of contents, menus, and indexes as key interface devices. Non-hierarchical links are possible.
Negroponte and Bolt: Spatial Dataland

Managing Information Spatially in Dataland

The Architecture Machine Group at MIT in the late 1970's built a number of experimental information environments that expanded the vision of what the possibilities of interacting with the computer can be. They called their information space "Dataland" and it operated in a room where almost everything was manipulatable information. The room, noted Bolt, is the computer terminal. Many of the functions, such as calendars and calculators, that we routinely use on our visual computer interfaces were first demonstrated in Dataland. Strictly speaking, the experiment was not about hypertext but about hypermedia. The ability to switch media and move around in an information environment was the key demonstration. We diagram the room-terminal on these pages.

Spatial Information Management Principle

One major concept used by the dataland experiment is called the "managing things spatially" principle. People "have a place" for information, suggested George Miller. We keep our messy desks because we remember where things are. If we straighten it up, we lose our spatial memory cues.
Each Object On Display Can Be Activated
Each of the objects displayed can be "zoomed in" on for greater detail.

Display Screen
Whole wall is display screen.

Voice Activated Commands
User wears a speech recognition microphone for voice travel. User can say things like "go to the book in upper left," "create a green circle...there," "move data A to green circle," and so on for "copy, delete, make smaller...larger, call that..." etc.

Loudspeakers
Four loudspeakers located in wall provide wrap-around sound.
Brown and Guide: Hypertext for PC and Macintosh

First Commercial System for Two Major Personal Computer Systems

To Owl International, Inc., which was founded in 1985, goes the credit of bringing out the first hypertext system to work on both of the major personal computer platforms, the IBM PC and Apple's Macintosh. Peter Brown of the University of Kent (U.K.) was the inventor of the Guide system. The products are based on further development work at Office Workstations Limited of Edinburgh, Scotland.

Owl has continued to increase the flexibility of Guide and to equip it with a family of support products including Guidance, which provides a context-sensitive environment for online reference and tutorials and Guide Reader, a low cost version that permits reading hypertext, but not authoring.

Guide also supports multi-media connections and the ability to link not only between documents but also between applications so that, for example, a user can link a text document with a spreadsheet.
Scroll and Outline Architecture

Guide relies heavily on a software architecture of scrolls of variable length, an outline structure of the document, and user-controlled expansion of that outline, which are revealed by clicking on portions of the outline. Other link types, such as the ability to link to other places in the text to pop-up notes and to activate other media are also part of the system design.
Sculley: Vision of the Knowledge Navigator

Introduction

John Sculley is a different kind of visionary. He is CEO of a major computer corporation. Yet many of his speeches have dealt with how we must change ourselves and our information environments in order to compete in the new information age.

Sculley inspired and sponsored futuristic work at Apple on the Knowledge Navigator, which describes the possibilities for personal computing in the years beyond 2010. The computer as envisioned by Sculley is driven by voice-activated commands. The computer responds with computer-created speech through the little moving picture of the man in the bow tie. We picture here a sketch of the Knowledge Navigator, which is a book-sized personal computer which has access to large knowledge bases of information.

The original Knowledge Navigator scenario was made into a videotape that simulated the functions of the computer and showed how the computer took its owner through a day that included an exploration of the problems of the destruction of the Amazon rain forests.

Impact of the Knowledge Navigator on Education

Sculley suggests, "Education will not simply be a prelude to a career, but a lifelong endeavor. Some of the important elements that will promote this new paradigm for lifelong learning are: (1) the development of conceptual skills, and the ability to test reality against multiple points of view; (2) the nourishment of individual creativity and the encouragement of exploration; (3) the encouragement of collaboration, and an emphasis on clear communication."

Customize Knowledge

"Most important, the Knowledge Navigator will customize knowledge for you... to make navigating through information and ideas as interesting and understandable as possible."
High Fidelity Sound

"Speech synthesis, speech recognition"

Atkinson: First Commercial Hypertext "Hit"

Introduction

HyperCard, developed by Bill Atkinson, is a multi-functional software tool that includes many hypertext properties. Apple Computer made it the first hypertext "hit" by deciding to give it away with the purchase of a computer.
HyperCard

HyperCard rapidly became the hit of 1987, far outstripping competing hypertext systems and enabling enthusiasts and commercial applications to hook up to laser disks and CD-ROM's to tap enormous text and graphics files.

Card Architecture

As the name implies, HyperCard relies on a software architecture and interface that appears to the user as a stack of index cards. However, these cards are linked in a great variety of ways that give considerable flexibility in the final development of hypertext and hypermedia on it.

HyperCard's Key Components

Atkinson had the genius to put the metaphor of hypertext together with an easy-to-use programming language, a simple word processor, a painting program and an elegant, inviting interface. The ease of use and the combination of functions of HyperCard provided a significant jump for hypertext.

HyperCard Focused Attention

HyperCard almost singlehandedly brought the idea of hypertext into the minds of well over a million people in one stroke, when Apple Computer's John Sculley decided to give it away with each purchase of a Macintosh computer. While HyperCard is much more than hypertext software, it put hypertext on the map.
Chapter 1. Introduction to Hypertext and Hypermedia

p. 20. Hypermedia Application: New Product Marketing. Lou Cassabianca of Hypermedia Magazine first showed me an application like this.

p. 22. Case Study: Hypermedia for Shakespeare. This discussion of hypermedia for Shakespeare was inspired by an implementation at Brown University and by a similar one at Stanford University.

Chapter 2. Current Issues With Hypertext

p. 47. Where to Put How Many Buttons of Which Kind. The seductive buttons were inspired by a slide from Theodor Nelson's dynamic slide show on hypertext.

p. 48-51 Inadequate (and Missing) Reading Cues. Material on these four pages follows the excellent paper by Charney (1987) and summarizes this paper.

p. 52. Branching Difficulties of Serialist Readers. see Pask (1976)

p. 56. Lost in Hyperspace. These issues were most compellingly raised by Conklin (1987).

p. 58. Overchoice and Cognitive Overload. These issues are also well put in Conklin (1987).

p. 60. Chaos in Titles for Documents and Their Parts. The author thanks Michael J. Steinback for formulating commandment number 7.

Chapter 3 Introduction to Information Mapping's Structured Writing Method

p. 76. Overview of This Chapter. Information Mapping, Inc. (for further information on the products and services of the company and the licensing of the methodology for software or training, contact Information Mapping, Inc., 303 Wyman Street, Waltham, MA. 02154 or call 617-890-7003) Brief History of Information Mapping. See items listed under Horn in the bibliography. Other Examples of Applications. Application of Information Mapping's Methodology to Philosophy. Several authors in Horn, ed., (1983) use the methodology in essays on metaphysics, cybernetics, and logic.

p. 82. The Problem of Human Short Term Memory. For further information on these pages see Miller (1956) and Simon (1979).

p. 96-97. Examples of Maps Displayed on Paper. The author acknowledges the permission of Information Mapping Inc. to reproduce these two sample pages of Information Mapping and other example material in this chapter.

p. 107. A Brief Discourse Analysis (Stable Subjects). The data in the two examples are from unpublished data of Horn.

p. 110. What are the Information types? Six of seven of these were first suggested by Horn (1965). See also Horn (1969), (1971, 72, 76) for further information.

Chapter 4 Navigating Structured Hypertrails

p. 128. Prerequisite. Mathematics example adapted from Kemnisky (1965) see also Horn et. al. (1969)

p. 144. Example Hypertrails. Example One (on dreams). see Bonime (1982) "Example of example hypertrail" is from an article which first appeared in Horn (1976).

Chapter 5 Resolving Some Hypertext Problems

p. 152. At the Nodes, Blocks and Maps Structure Hypertext. The author acknowledges permission of Information Mapping, Inc. to publish the map on the example of an information map.

p. 158. Addressing The Major Reading Cues Problem. The best sources are Horn (1976) currently used as course manuals in Information Mapping's courses.

Chapter 6 Relatively Stable Discourse: Documentation and Training

p. 170-171. Operations and Technical Manuals. The author acknowledges permission of Information Mapping, Inc. to reproduce these two maps.

p. 172-173. Personnel Manuals and Policy Manuals. The author acknowledges permission of Information Mapping, Inc. to reproduce these two maps.

Chapter 7 Disputed Discourse: Argumentation Analysis

p. 186-187. Overview of This Chapter. The discussion on this page is from Toulmin (1958) as well as the discussion on the next three pages of claims, grounds, warrants, backing, rebuttal, and qualifiers. Extensive use was also made of Toulmin et. al. (1979).

p. 200-204. Case Study. The example is from an unpublished study of using argumentation analysis in examining the ethics of using nuclear weapons done at the Lexington Institute. The most extensive use of Toulmin structures in hypertext has been done by Cathy Marshall (1987).

p. 204-206. Comparing Ill-Structured and "Tame" Problems. The material on these pages is from an excellent discussion in Mitroff et. al. (1983).

Chapter 8 Experimental Discourse: Scientific Information

p. 218. Miller: Short Term Memory Limits and Chunking. The chart is from Miller (1956). The author gratefully acknowledges permission of the American Psychological Association to reproduce it.

Notes

p. 224. Schaffer: Information Mapping's Methodology. The quotes are all from Schaffer (1982). The author gratefully acknowledges permission of the NSPI Journal to reproduce the quotes.

p. 226. Reid and Wright: Superiority of Visual Structuring. The four diagrams are from Reid and Wright (1973). The author gratefully acknowledges the permission of the Journal of Applied Psychology to reproduce the four examples in the "material used section."

p. 228. Hypertext May Facilitate Identifying Problems. The two quotes are from Root-Bernstein (1982).

p. 230. Linked Comments Will Highlight Deficiencies. The references made are to Drexler (1986).

Chapter 9 Mapping Future Infospace

p. 246. Travelling in Large Visual Landscapes. The graphic possibilities of large landscapes like this have been suggested to me by Jim Channon and David Sibbet. I have taken their 2-D work and applied it to the 3-D world of virtual reality.

Appendix A: Some Historical Notes

p. 252. Bush: Inventor of the Concept of Hypertext. All the quotes from this page are from Bush (1945). The author gratefully acknowledges permission of Atlantic Magazine to reproduce these quotes.

p. 260. van Dam and Brown: First University Instruction. This account is from Yankolovich (1985).

p. 262. The Xerogroup at Carnegie Mellon. This discussion is based on Newell et. al. (1981).

p. 264. Negroponte and Bolt: Spatial Dataland. Details of the material on this page can be found in Bolt (1984).

p. 268. Sculley: Vison of the Knowledge Navigator. The quote on this page is from Sculley (1989). Other quotes are from Sculley (1987).
References

Hypertext

Boston Computer Society, Hypermedia Group, Hypermedia Resource Base. Available as indexed bibliography (paper or on disk) BCS, Hypermedia Group, One Center Plaza, Boston, MA, 02108

References

References

Horn, R. E. (1980) Information and Decision Management through Structured Writing, a concept paper for Delta Force, U.S. Army War College

Stuart, Teresa Habito. (1979) The effectiveness of Information Mapping® compared with the conventional paragraph in communicating technical information Unpublished M.A. Thesis. University of the Philippines at Los Banos

Argumentation Analysis

Other Works Cited

Lanier, J. Virtual Reality - An Interview with Jaron Lanier, Whole Earth Review, Fall 1989, 108-119
Simon, H. A. (1979) "How Big is a Chunk?" in Models of Thought New Haven: Yale University Press pp. 50-61
Acknowledgments

A book like this could not have been written without the help of many people. First, I want to acknowledge the encouragement and support of the people of Information Mapping, Inc., who have by their quality work, made the company and the methodology what it is today. Especially, I want to thank the old timers there, especially Nancy Fohl, Tim Burke, George Coufos, Mary Ann Cluggish and Jerry Paradis for their spirit and their excellence. Discussions with Doug Gorman, President of Information Mapping, have always been challenging and useful. And I have also learned a lot from Barb Ross, Vice President, who has pioneered in applying Information Mapping’s approach to on-line text, and from Carol Vallone, Vice President, who is now leading Information Mapping in its computer-based applications. Specific acknowledgment and thanks is given to the company for permission to use copyrighted materials.

I have learned something that eventually found its way into this book almost every time I got together with my friends David Sibbet, Bob Weber, Jim Channon, Bill Verplank, Michael Cone, and Paul Foraker.

For reading earlier versions of the book, certain chapters, or offering suggestions on particular aspects of the book, I want to thank Carl Binder, Michael J. Steinbach, Bob Weber, John Kelly, Scott Kim, Aaron Marcus, Paul Bellerive, Doug Gorman, Don Cock, Barbara Ross, Jeff Beegle, and Jan Walker.

And thanks to my typist, Gail Sheehan for putting up with my experiments and my many revisions and to Jeanne Beegle and Ming Kendall for proofreading the book and a second round of thanks to Ming Kendall for doing the index. Thanks also go to Patricia D’Andrade for preparing initial drafts of a few of the abstracts in Chapter 8 and for insightful discussions on improving the usefulness of abstracts. And also thanks to Mrs. Betty Anne Cross and Mrs. Vicky Feteris of the reference section of the Lexington Library without whose help, especially in the inter-library loan area, this book would have taken much longer to get out. I also want to acknowledge the inspiration of my long time acquaintanceship with Doug Engelbart since 1970, and to Ted Nelson, whom I didn’t meet until recently, but whose ideas and visions have always sparked my imagination.

Robert E. Horn
Lexington, Massachusetts
December 1989
Index

Accessible detail principle, 197
Administration mode, in hypertext systems, 29
Aksay, Robert M., 262
Analysis mode, 35
Analysis process,
 Information Mapping's method, how it aids, 162-163
 stages of developing documents, 102-103
Analytical labels, 92
Anthologies, in hypertext, 31
Applications overviews, in hypertext, 72
Applications,
 hypermedia, 20-21
 for Shakespeare, 22-23
 hypertext,
 current, 29
 early, 12-13
Argumentation analysis,
 definition, 186
 history, 186-187
 hypertext, 207
 Information Mapping's method, framework for, 194-197
 problems, useful for presenting, 198-205
Atkinson, Bill, inventor of HyperCard, 270-271
Authoring mode, in hypertext systems, 29
Block, see Information block
Block label,
 kinds of, basic,
 analytical, 92
 display, 92
 guidelines, 93
 using, 93
Bolt, Richard A., 264-265
Bottom up analysis, 116-117
Branching stories, in hypertext, 32
Briefing (presentation) mode, 35
Brown, Peter, 266-267
Brown University,
 commentary: definition of hypertext, 7
 history of hypertext, 3
 hypertext systems for university instruction, 260-261
Browsing,
 mode, in hypertext, 34
 rapid, 10

Bush, Vannevar,
 commentary: memory is associative and it fades, 4
 history of hypertext, 2
 inventor of concept of hypertext, 7, 252-253
Buttons,
 definitions, 9
 design issue, 150-151
 development issue, 62
 examples, 88
 guidelines for managing size for modularity, 102-103
 levels of, 108-109
 Miller's paper on concepts, 218-219
 principle, 83
 Simon's test, 220-221
Chronological hypertrails, 132-133
Clark, R., on metacognition, 54
Classification hypertrails, 130-131
Classification, as information type, 111
Cluster link, in multiplicity of links, 43
Cognitive overload issue, 156-157
Combination labels, 92
Commentaries, in hypertext, 30
Communication, integrating with computing media, 235-237
Computer metaphor, 32-33
Computer-based training, 68
Computing media, integrating with communication, 236-237
Concept, as information type, 111
Consistency principle,
 argumentation analysis framework, 195
 implication, 93
 principle, 85
Controlled vocabulary, 69
Cross-references, in hypertext, 31

Dasiland, 264-265
Decision hypertrails, 140-141
Definition/definitions, analytical label, 92
author-created links, 27
backing, 191
bottom up analysis, 117
branching stories, 32
buttons, 9
claims, 188
classification, 110-111
classification hypertrail, 134
combination label, 92
computer-based training, 68
concept, 110-111
controlled vocabulary, 69
decision hypertrail, 140
definition hypertrail, 142
discourse cues, 48
display label, 92
domain of experimental knowledge, 211
domains of discourse, 104
every hypertrail, 144
fact, 110-111
full text search, 68
granularity, 40
grounds (data), 189
holist learners, 52
hypermedia, 18
hypertext, 6-7
hypertext systems, 15
hypertrails, 126
ill-structured problems, 198
information sharing, 28
links, 8
metacognition, 54
nodes, 29
multiplicity of links, 45
nodes, 9
on-line help messages, 69
one-way directionality, 44
paragraph, 90
prerequisite hypertrail, 128
principle, 110-111
procedure, 110-111
process, 110-111
project hypertrail, 136
qualifiers, 193
re-coding, 83
rebuttal, 192
relational databases, 33
reference-based training, 115
relatively stable subject matter, 106
theories, 98
semantic nets, 32
serialist learners, 52
simulations, 33
structure, 110-111

Definition/definitions, continued
structure hypertrails
subject matter independent label, 92
subject matter label, 92
system-supplied links, 26
top down analysis, 116
two-way directionality, 44
user-created links, 27
versions, 70
warrants, 190
well-structured problems, 198
Design issue, in hypertext, 24, 38-45
links, 42-45
nodes, 40-41
Development issue, in hypertext, 24, 39, 62-73
computer-based training, 68
controlled vocabulary, 69
corresponding text,
applications overview, 73
full text search, 73
hierarchical structured indexes, 73
keyword indexing, 73
cost tradeoff, 72
full text search, 68
indexing, 65
keywords, 69
labor-intensive, 62-65
on-line help messages, 69
planning and editing, 63
skills needed, 66-67
versions, 70-71
Directionality of links, 44
Discourse cues, 148-149
Discourse domains, see Domains of discourse
Display labels, 92
Domains of discourse, definition, 104
discourse analysis, 166-107
discursive discourse: argumentation analysis, 185-207
backing, 191
claims, 188
grounds (data), 189
qualifiers, 193
rebuttal, 192
warrants, 190
documentation and training, 168-183
examples, 104-105
experimental discourse, 210-231
experimental knowledge, 211
importance, 105
relatively stable discourse, 104-105, 168-183
examples, 170-173
product knowledge case study, 174-175
Edition mode, in hypertext systems, 29
Engelbart, Douglas C., builder of hypertext system, 6, 254-255
personal computer, 256-257
Example hypertexts, 144-145
Experimental discourse, 210-231
Expert filter, in multiplicity of links, 45
Fact, as information type, 111
Fairness to learners principle, 129
Filters,
category of,
category, 44
expert, 45
menu of links, 45
voting, 44
development issue, pruning and filtering, 65
Footnotes, in hypertext, 30
Full text search, in hypertext, 68, 73
Geographic hypertexts, 134-135
Graphic skills, for hypertext authoring, 67
Grazing, 34
Groups, working together, 162-163
Guaranteed access to prerequisite principle, 129
Guide, 266-267
Hartley, J., 222-224
Hierarchical mode, 34
Hierarchical link, 42
Hierarchical structured index, in hypertext, 73
Hierarchy of chunking and labeling principle, argumentation analysis framework, 197
principle, 94
rationale, 64
Holistic learner, 82
HyperCard,
Atkinson, Bill, developer, 270-271
history of hypertext, 3
Hypermedia, application, 20-21
for Shakespeare, 22-23
integration of communication and computing media, 236-237
introduction to, 18-23
Mellon, T.H., corner of term, 7
virtual reality, 244-247
Hyperspace, addressing lost in hyperspace issue, 156-157
navigating through, 16-17
Nelson, T., 16
user issue, 56-57
HyperText,
applications, see Applications of hypertext
Atkinson, B., 270-271
authoring, skills needed, 66-67
basics of, 2-17
Brown University, 250-261
HyperText, continued
Bush, V., inventor, 252-253
browsing mode, 34
characteristics, 10-11
computer metaphors,
branching stories, 32
linked note cards, 32
linked screens or windows, 33
popup notes, 32
relational databases, 33
semantic nets, 32
simulations, 33
stretched text (outlines), 33
concepts, current, 24-35
browsing, rapid, 10
definition, 6-7
dimensions of, 24-25
applications, 29
information sharing, 28
modes, 28-29
administration, 29
authoring, 29
editing, 29
using, 29
Engelbart, D.C., 254-255
features of, 10-11
highlighting deficiencies, 230-231
history of, 2-3, 250-271
HyperCard, 270-271
hypertext systems, dimensions of, 28-29
usage contexts, 14-15
hypertexts, 126-147
Information Mapping's method, addressing problems in hypertext, 150-165
connection with hypertext, 79, 211
information sharing, 28
integrating communication and computer media, 236-237
introduction to, 2-35
issues, 24, 38-73
addressing of,
cognitive overload, 156-157
design, 150-151
lost in hyperspace, 156-157
cognitive overload, 156-157
design, see Development issue
development, see Development issues implementation, 24, 62-65
indexing, 65
labour-intensive creation and maintenance, 150-161
lost in hyperspace, 56-57, 156-157
solutions, clustering blocks, 154-155
design, 150-151
structured blocks, 152-153
user, see User issues
Hypertext, continued
- menu driven interfaces, 262-263
- metaphors, see Metaphor
- navigation,
 - options, 164-165
 - through information space metaphor, 16-17
 - through whole subject matters, 238-243
- Nelson, T.H., 3, 7, 258-259
- non-linear discourse, 10
- on-line documentation and training, relating with, 68-69
- Owl's Guide, 266-267
- paper metaphors, 30-31
 - anthologies, 31
 - commentaries, 30
 - cross-references, 31
 - footnotes, 39
 - indexes, 39
 - library card catalogs, 30
 - quotes, 31
 - sticky notes, 31
- personalized, feature of, 11
- pointing way toward advances, 230-231
- private (or in-house), usage context, 14
- problems,
 - identifying, 228, 229
 - multiple representational ecologies, 60
 - resolving of, 150-155
- product knowledge case studies, 174-183
- public access, usage context, 15
- read only, feature of, 11
- reading, multiple ways of, 3
- skills needed, 66-67
- software, essence of, 8-9
- sources of, 4
- structured hypertext, 152-153
- university instructions, using for, 260-261
- using, ways of, 34-35
- Van Dam, A., 260-261
- virtual reality, 244-247
Zog, 262-263

Hypertexts,
- chronological, 132-133
- classification, 130-131
- decision, 140-141
- definition, 125
- example, 144-145
- geographic, 134-135
- linearized sequences, 146-147
- navigating through, 126-147, 238-243
- prerequisite, 128-129
- project, 136-137
- structure, 138-139

Implementation issues, in hypertext, 24, 62-65

Indexes, in hypertext, 30

Indexing issues, in hypertext, 65

Information blocks,
- analysis, applied to scientific papers, 214-217
- clustering,
 - kinds of, 95
 - to form maps, 155
- construction, 86-87
- definition, 84-85
- examples, 88-89
- grouping into maps, 95
- guidelines, developing of, 92-93
- history of, 76-77
- identifying domains of discourse, 105-107, 114-115
- key blocks, 112-113
- kinds of block content, 88-89
- labels, see Block label
- managing completeness, 100-101
- mapping metaphor, 121
- modularity, 102-103
- navigational options, 164-165
- principles of constructing, 85
- replacing paragraphs, 90-91
- sequencing, 95
- standards, developing of, 92-93
- structured hypertext, 152-153
- types of, 84
- using, most frequently, 109

Information map,
- blocks, clustering of, 154-155
- definition, 94
- guidelines, 94-95
- history, 76-77
- mapping metaphor, 121
- navigational options, 164-165
- organization and structure of documents, 98-99
- structured hypertext, 152-153

Information Mapping's method,
- applying to,
 - on-line text, 168-183
 - scientific papers, 210-211
- approach, 80-81
- argumentation analysis as framework, 194-197
- definition of, 80
- goal, 77
- groups, working together, 162-163
- history, 76-77
- hypertext,
 - connection with, 79, 211
 - resolving problems, 150-161
 - cognitive overload, 156-157
 - hypertext design problems, 150-151
 - labor-intensive creation and maintenance, 160-161
 - lost in hyperspace, 156-157
 - reading cues problems, 158-159
 - structured, 152-153
- hypertexts, navigating through, 126
- information blocks, see Information blocks
Information Mapping's method, continued
 introduction to structured writing, 76-123
 intuitive chunking vs. precision modularity, 85
 labeling standards, commentary, 60
 mapping metaphor, 120-121
 navigational options, 164-165
 problems, solving, 78-79
 reference-based training, 118-119
 replacing paragraph with precision modularity, 91
 results, 114-123
 Shaffer's study, performance advantages, 224-255
 trends, integration of communication with
 computing media, 236-237
Information sharing, in hypertext systems, 28
Information space, mapping future, 234-249
 metaphor, 16-17
 trends, integrating communication with
 computing media, 236-237
Information types,
 key blocks for, 112-113
 kinds of,
 classification, 110-111
 concept, 110-111
 definition, 110
 fact, 110-111
 principle, 110-111
 procedure, 110-111
 process, 110-111
 structure, 110-111
 use, 110-111
Infospace, see Information space
Integrated graphics principle, 196
Integration of communication and computing data, 236-237
Issues, in hypertext,
 addressing of,
 cognitive overload, 156-157
 design, 150-151
 lost in hyperspace, 156-157
 cognitive overload, 156-157
 design, see Design issue
 development, see Development issues
 implementation, 24, 62-65
 indexing, 65
 labor-intensive creation and maintenance, 150-161
 lost in hyperspace, 56-57, 156-157
 solutions,
 clustering blocks, 154-155
 design, 150-151
 structured hypertext, 152-153
 user, see User issues
Knowledge based management skills, for hypertext
 authoring, 66
 Knowledge navigator, 268-269
Label standards, 60
Labeling principle,
 argumentation analysis framework, 194
 block labels, see Block label
 constraint, 85
 guidelines and standards for developing, 92
 principle, 85
Labor intensive creation and maintenance issue, in
 hypertext, 160-161
Learning mode, 35
Library card catalogs, in hypertext, 30
Linearized sequences, for hypertrails, 146-147
Link directionality, 44
Linked note cards, in hypertext, 32
Linked screens or windows, in hypertext, 32
Links,
 characteristics of,
 directionality, 44
 multiplicity, 45
 computer metaphor, 32-33
 definition, 8
 design issue, 38, 42-45, 150-151
 development issue, 62, 63, 65
 examples of, 8
 filters, see Filters
 issues with,
 directionality, 44
 multiplicity, 45
 kinds of,
 cluster, 43
 hierarchical, 42
 keyword, 42
 referential, 43
 link-making options, 11
 pruning and filtering, 65
 types of,
 author-created, 27
 system-supplied, 26
 user-created, 27
 paper metaphors, 30-31
 personal, 253
 solution of issues, 150
 trails, retrieving of, 253
 user issue, 59
Long term memory, 82-83
Lost in hypertext,
 solution to problem, 156-157
 user issue, 56-57
MIT Architecture Machine Group, 264-265
Maps, see Information maps
McClelland, Donald L., 262
Memory, association, 4
Memory, long term and short term, 82-83
Menu of links, 45
Metacognition, 54-55
Metaphor/metaphor, 32-33
 computer, 32-33
 information space, 16-17
 mapping, 120-121
 navigation, 17
 paper, 30-31
 project hypertexts, 136
Miller, George A.,
 concept of short term memory limits and chunking, 218-219
 on chunking, 82-83
 spatial information management principle, 264
Modes, 29
 definition, 29
 kinds of,
 authoring, 29
 briefing, 35
 browsing, 34
 editing, 29
 help, 34
 learning and analysis, 35
 referencing, 35
 training, 34
 using, 29
Multiple representational ecologies, 60
Multiplicity of links, 45

Navigation, 164-165
 through hypertexts, 126-147, 238-243
 through information space metaphor, 16-17
 through subject matters, 258-243
Negroponte, Nicholas,
 history of hypertext, 3
 managing information spatially in Dataland, 264-265
Nelson, Theodore (Ted) Helm,
 coiner of terms hypertext and hypermedia, 7, 258-259
 commentary,
 another definition of hypertext, 7
 multiple ways to read hypertext, 3
 history of hypertext, 2
 hypertext system, 16, 29
 navigation through hyperspace, 16
Newell, Allen, 262
Nodes, 9
 definition, 38, 40-41, 150-151
 development issue, 62-63
 granularity, 40
 solution of issues, 150
 structured hypertext, 152-153
 user issue, 59
Non-Linear discourse, 10

On-line help messages, 69
One-way directionality, of links, 44
Overchoice, hypertext user issue, 58-59
Overload, cognitive, hypertext user issue, 58-59
Owl's Guilde, 266-277
 first commercial hypertext system, 266-277
 history of hypertext, 3

Paper metaphor, for hypertext linkages, 30-31
Personalized hypertext, 11
Popup notes, in hypertext, 32
Precision modularity, 85-87, 91
Prerequisite hypertexts, 128-129
Principle, as information type, 111
Principle/principles,
 accessible detail, 197
 chunking, see Chunking principle
 consistency, see Consistency principle
 fairness to learners, 129
 guaranteed access to prerequisites, 129
 hierarchy of chunking and labeling, see Hierarchy of chunking and labeling principle
 information blocks, 84-85
 integrated graphics, 196
 labeling, see Labeling principle
 relevance, see Relevance principle
Private (or in-house) hypertext systems, 14
Procedure, as information type, 111
Process, as information type, 111
Project hypertexts, 136-137
Public access hypertext systems, 15

Quotes, in hypertext, 31

Read-only hypertext, 11
Reader behavior, 59
Reading cues, 48, 158-159
Reference-based training, 118-119
Referencing mode, 35
Referential link, 43
Relational databases, in hypertext, 33
Relevance principle,
 argumentation analysis framework, 194
 constraint, 86
 implication, 93
 principle, 85
Reid, F., 226-227
Rhetorical skills, for hypertext authoring, 66
Robertson, George C., 262
Science information system, 212-213
Scully, John, 268-269
Semiotic nets, in hypertext, 32
Serialist learner, 52
Shaffer, Eric M., 224-225
Short term memory, 82-85
 Miller's concept, 218-219
 Simon's test, 220-221

Simon, Herbert A., 220-221
Simulation, in hypertext, 33
Skills, needed for hypertext authoring,
graphic, 67
interface design, 66
knowledge base management, 66
thesis, 69
Sticky notes, in hypertext, 31
Stretch text (outline), 33
Structure, as information type, 111
Structure hyperrails, 138-139
Subject matter independent label, 92
Subject matter label, 92

Titling documents, seven commandments for, 61
Top down analysis, 116-117
Training mode, 35
Trends, integration of communication and computing
media, 226-237
Trueman, M., 222-223
Two-way directionality, of links, 44

University instructions, using hypertext systems for,
260-261
User issues, in hypertext, 39, 46-61
buttons, 46-47
short-term memory overload, 58-59
lost in hyperspace, 56-57, 156-157
overchoice, 58-59
metacognition skills, 54-55
reader behavior, 50-51
reading cues, 48-49
serialist reader, 52-53
title for documents and their parts, 38-39, 60-61
Using modes, in hypertext systems, 29

Van Dam, Andries, 260-261
Versions, in hypertext, 70-71
Virtual reality, 243-244
Voicing filter, multiplicity of links, 44

Walker, Jan, 34
Wright, P., 226-227
Writing, non-sequential, 7

Zog Group, 261-263
Mapping Hypertext

The Analysis, Organization, and Display of Knowledge for the Next Generation of On-Line Text and Graphics

a new book by
Robert E. Horn

Contents

Part 1. Hypertext and Hypermedia, New Opportunities
1. Introduction to Hypertext and Hypermedia
2. Current Issues with Hypermedia

Part 2. The Method of Information Mapping
3. Introduction to the Information Mapping Method
4. Navigating Structured Hypertexts
5. Resolving Some Hypertext Problems

Part 3. Some Applications of Structured Hypertext
6. Relatively Stable Discourse: Documentation and Training
7. Disputed Discourse: Argumentation Analysis
8. Experimental Discourse: Scientific Information

Part 4. So What? What Next?

Appendix A. Some Historical Notes

Early Comments on Mapping Hypertext

I am convinced that the future of man's knowledge production and utilization will be deeply enmeshed in the structure, conventions and methods associated with the descendents of today's hypertext. Bob Horn has produced a notable step toward that end.

—Doug Engelbart, Bootstrap Project, Stanford University; first person to implement hypertext on a computer system

Mapping Hypertext is a thoughtful and provocative overview of both hypertext and Information Mapping; full of useful advice and interesting bits of history. It is a must read for anyone concerned about how computers can become effective tools for human communication—Paul Saffo, The Institute for the Future; columnist, Personal Computing

This book will change the way people think about their current information and the hypertext revolution.

—Ken Blanchard, co-author of the best selling The One Minute Manager

Bob Horn suggests an antedote for the problem of disorientation that often comes with navigating through hypertext...

Mapping Hypertext by Robert E. Horn is a tour de force in several respects. First, it is an amazing example of “graphic language”...Mapping Hypertext is a unique and seminal work, covering the history and conceptual underpinnings of hypertext, suggesting applications and design principles capable of stimulating hypertext and hypermedia design for years to come...

—Carl Binder, Performance and Instruction, October 1991

Boy, do I wish we'd had this book when we were designing the CD-ROM Electronic Whole Earth Catalog... This book is the most thorough survey of solutions thus far. And it is organized in a highly visual hypertext-like format which effectively illustrates many of the principles being discussed. An absolutely first-rate work. —Keith Jordan, Whole Earth Review, Summer 1991

Send to: INFORMATION MAPPING, INC.
300 Third Avenue
Waltham, MA 02154

Now available via MASTERCARD or VISA!
Call (617) 890-7003 to order

☐ Please send me ___ copy(ies) of Mapping Hypertext at $39.50 each, plus $3.00 shipping and handling. I've enclosed a check. (Add $1.73 state tax per copy)

☐ Please use my Mastercard or VISA for payment. (Circle which one)
Card #: __________
Exp. Date: __________

Name: __________________________
Title: __________________________
Department: ____________________
Company: ______________________
Address: ________________________
City, State __________ Zip __________

OR CALL (617) 890-7003

Mapping Hypertext
Analysis, Linkage, and Display of Knowledge for the Next Generation of On-Line Text and Graphics
Robert E. Horn

About the Book
The technology of hypertext offers the very real potential of helping both business and society deal productively with the information explosion. Mapping Hypertext illuminates the promise and the reality of hypertext and information management, bringing hypertext together with a complementary methodology critical to its success: Information Mapping’s method for analyzing, organizing, and presenting information. The book also breaks new ground in its highly graphic presentation, an intriguing visual simulation of hypertext. Mapping Hypertext will change forever the way people approach information organization and the hypertext revolution.

About the Author
Robert E. Horn is the inventor of Information Mapping’s methodology and has spent his professional life applying the principles of cognitive science and learning theory to the solution of communications problems. He has taught on the graduate level at Harvard and Columbia universities. The company Horn founded, Information Mapping, Inc., the recognized leader in high performance communications, has helped many of the world’s largest companies deal successfully with the management of large amounts of complex information.